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Long-wavelength thermocapillary instability with the Soret effect
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We study the onset of Marangoni instability of the quiescent equilibrium in a binary liquid layer with a
nondeformable interface in the presence of the Soret effect. Linear stability analysis shows that both monotonic
and oscillatory long-wavelength instabilities are possible depending on the value of the Soret numberx. Sets
of long-wavelength nonlinear evolution equations are derived for both types of instability. Bifurcation analyses
reveal that in the regime of monotonic instability square patterns bifurcate supercritically and they are preferred
in competition with roll patterns. Hexagonal patterns bifurcate transcritically and the condition for the emer-
gence of steady stable hexagonal patterns is derived. In the case of oscillatory instability, traveling and standing
waves are found to bifurcate supercritically in the narrow range of the Soret parameter and traveling waves are
found to become the selected type of flow.
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I. INTRODUCTION

Various transport processes encountered in techno
and nature are owing to or affected by simultaneous actio
temperature and solute concentration gradients. Diffe
configurations of those gradients were discussed@1# in the
context of buoyancy-driven convection. Similar settings c
be also considered in regards with the surface-tension-dr
convection in the no-gravity environment. Relevant e
amples are different techniques of materials processing,
crystal growth, from binary or multicomponent liquid mix
tures. Many of them, especially those employing the float
zone and temperature-gradient methods, involve large t
perature and possibly concentration gradients imposed
various directions relatively to the melt@1#.

The buoyancy-driven~Rayleigh! convection in a binary
mixture has been a subject of an extensive investigation
both the theoretical and experimental aspects. It is now w
known that simultaneous presence of two or more com
nents with different diffusivities in a liquid layer may lead
a variety of new phenomena. Specifically, if two or mo
components with different diffusivities are present in a flu
and their gradients make opposing contributions to the fl
density, a possible source of instability can be created.
instance, a layer subjected to a stabilizing solute concen
tion can exhibit an oscillatory instability when a destabil
ing thermal gradient across it opposes the former@2#. Under
some conditions, the characteristic spatial scale of conv
tive patterns is large. In that case a long-wavelen
asymptotic approach can be applied@3#. Two main physical
situations are possible here:~i! the temperature gradient an
the concentration gradient have independent sou
~double-diffusive convection!; ~ii ! the temperature gradient i
imposed, while the concentration gradient is generated sp
taneously due to the Soret effect. Extensive reviews@4,5#
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encompass the work on double-diffusive phenomena
their applications in oceanography, chemistry, metallur
geology, geophysics, etc. For a review on the convection
layers of a binary liquid with the Soret effect the reader
referred to Ref.@6#.

If the liquid layer has a free surface, the surface-tensi
driven~Marangoni! convection, caused by the dependence
surface tension on both the temperature and the solute
centration, can appear. In a majority of mixtures surface t
sion decreases with temperature and increases~decreases!
with concentration of an inorganic~organic! solute. There-
fore, if a layer of a binary mixture is subjected to both tem
perature and concentration gradients, nonuniformities
those at the free surface lead to the emergence of sur
shear stresses that can under certain conditions destab
the quiescent base state.

There is a significant amount of research done on
Marangoni instability in a pure fluid layer@7#. However, to
the best of our knowledge the literature is scarce with a
search on double-diffusive and Soret effects in the contex
interfacial phenomena. Linear stability analysis of the qui
cent equilibrium in a layer with a free surface under t
action of independent temperature and concentration gr
ents across the layer was carried out by Castillo and Vela
@8–10# and by McTaggart@11#. It was found that when both
the thermal and solutal Marangoni numbers are positive,
the shear stresses induced separately by thermal and co
tration components enhance each other, the quiescent
can lose its stability monotonically. However, when the c
responding Marangoni numbers have opposite signs,
when the shear stresses induced separately by therma
solutal components counteract, the instability is mostly os
latory. The case where the solute concentration gradien
produced by the Soret effect was considered in Refs.@12–
15#. A specific type of oscillatory instability due to the exc
tation of capillary-gravity waves by the Marangoni effe
was discovered in Ref.@16#.

Investigations of nonlinear aspects of the Marangoni c
vection in binary liquids are much more rare. Ho and Cha
:
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A. ORON AND A. A. NEPOMNYASHCHY PHYSICAL REVIEW E69, 016313 ~2004!
@17# analyzed, by means of amplitude equations, the fl
dynamics in the neighborhood of the double-zero point, i
a point in the space of parameters where monotonic and
cillatory instabilities compete. Bergeonet al. @18# studied
numerically the two-dimensional~2D! Marangoni convec-
tion in binary mixtures in a container. Recently, 3D oscil
tory convective regimes were studied by Bestehorn and C
net @19# by direct numerical simulations of th
hydrodynamic equations, as well as on the basis of the m
complex Swift-Hohenberg equation. Let us mention also
experimental work@20# devoted to the combined Rayleigh
Marangoni convection in a binary solution. Linear and no
linear analyses of long-wavelength coupled double-diffus
thermocapillary instability were carried out by Braverm
and Oron@21#. The nonlinear theory of the long-waveleng
monotonic Marangoni instability in a pure liquid was deve
oped in Refs.@22–26#. In the case of the oscillatory instabi
ity we refer to the nonlinear theories developed for the bu
ancy convection in a binary fluid in Refs.@27–29#.

It is the purpose of the present work to study the imp
tant case of convection in a binary liquid layer withpoorly
conducting boundaries, where the quiescent state is unstab
with respect tolong-wavelengthdisturbances. Here, in th
limit when the heat flux across the layer is fixed, unifor
variations of the temperature and of the solutal concentra
are neither damped nor amplified. When large-scale horiz
tal modulation of both the temperature and concentra
fields is imposed, flows are generated by the surface-ten
gradients which can lead to a long-wavelength instability.
the present paper we first carry out the linear stability ana
sis of the system and find both long-wavelength monoto
and oscillatory modes of instability in various parameter d
mains. The long-wavelength nonlinear analysis is perform
next to derive sets of evolution equations for both the mo
tonic and oscillatory Marangoni instabilities in a binary li
uid in the presence of the Soret effect. The obtained eq
tions are then used for the analysis of pattern selection.

II. STATEMENT OF THE PROBLEM AND GOVERNING
EQUATIONS

We consider a layer of an incompressible binary liquid
an infinite extent in the longitudinal directionsx* and y*
and thicknessd lying on a rigid plane and exposed to th
ambient gas phase at its nondeformable free surface.
layer is subjected to a transverse temperature grad
2a,a.0. It is assumed that the film is sufficiently thin, s
that the effect of buoyancy can be neglected as compare
the impact of the Marangoni effect. The Soret effect is
sumed to be present. Surface tensions is assumed to be
dependent upon both temperatureT* and solute concentra
tion C* , s5s(T* ,C* ), and therefore thermocapillary an
solutocapillary effects are taken into account.

We now proceed to the formulation of the mathemati
model used in what follows. A set of governing equations
the presence of the Soret effect and when static gravit
incorporated into the pressure terms is given by

“•v* 50, ~1a!
01631
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vt*
* 1~v* •“ !v* 52r21

“p* 1n¹2v* , ~1b!

Tt*
* 1v* •“T* 5k¹2T* , ~1c!

Ct*
* 1v* •“C* 5D¹2C* 1aD¹2T* . ~1d!

Here v* , T* , p* , and C* are fields of the fluid velocity,
temperature, pressure, and solute concentration, respect
n, k, D, anda are, respectively, kinematic viscosity, therm
diffusivity, mass diffusivity of the mixture,r is its reference
and the Soret coefficient, density,“[(]x* ,]y* ,]z* ), andt*
is time.

The boundary conditions at the bottom rigid surface
flect the no-slip condition for the velocities, a specified he
flux and mass impermeability, respectively,

v* 50, Tz*
* 52a, Cz*

* 5aa at z* 50. ~2!

At the free nondeformable surface the boundary con
tions are, respectively, the kinematic boundary conditi
heat transfer governed by the Newton’s law of cooling, a
mass impermeability:

v* •ez50, kTz*
* 1q~T* 2T*̀ !50,

kCz*
* 2aq~T* 2T*̀ !50 at z* 5d, ~3!

wherek is the thermal conductivity of the mixture,q is the
rate of heat transfer by convection at the free surface,ez is
the unit vector in thez* direction, andT*̀ is the sustained
temperature of the ambient gas phase. Also, the balanc
tangential stresses at the free surface is given by

m]z* u* 5“'s, ~4!

where¹'[(]x* ,]y* ) and u* is the projection of vectorv*
onto the plane normal toez . Under the assumption of linea
dependence of surface tensions on both temperature an
concentration

s~T* ,C* !5s02s t~T* 2Tr* !1sc~C* 2Cr* !,

Eq. ~4! is rewritten in the form

m]z* u*52s t“'T* 1sc“'C* at z* 5d, ~5!

wherein s t52]s/]T* , sc5]s/]C* , m5nr is the fluid
viscosity, andTr* and Cr* are, respectively, the referenc
temperature and concentration. For most aqueous solut
of inorganic salts surface tension decreases with tempera
and increases with salt concentration, hence the values os t
andsc are positive for this choice of a mixture. For aqueo
solutions of organic solutes surface tension usually decre
with concentration, and therefore in this casesc will be
negative.

We define the dimensionless variables of the problem

t* 5
d2

n
t, ~x* ,y* ,z* !5d~x,y,z!, ~u* ,v* !5

k

d
~u,v!,
3-2
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T* 5T*̀ 1adT, C* 5
s tad

sc
C, p* 5

rnk

d2
p. ~6!

This yields the dimensionless form of the governing eq
tions

“•v50, ~7a!

vt1P21~v•“ !v52“p1¹2v, ~7b!

PTt1v•“T5¹2T, ~7c!

SCt1L21v•“C5¹2C1x¹2T, ~7d!

and the boundary conditions are rewritten as

v50, Tz521, Cz5x at z50, ~7e!

v•ez50, Tz1BT50, Cz2xBT50,

]zu1M“~T2C!50 at z51. ~7f!

Here

P5
n

k
, S5

n

D
, x5

asc

s t
, B5

qd

k
,

M5
s tad2

mk
, and L215

S

P
~8!

are, respectively, the Prandtl, Schmidt, Soret, Biot, M
rangoni, and inverse Lewis numbers. It should be emp
sized that in virtually all physical settingsS@P and there-
fore the relevant range for the inverse Lewis numbers
L21@1.

The base state whose stability will be studied here
given by

v050, T052z1
11B

B
, C05xz1const, p05const.

~9!

III. LINEAR STABILITY ANALYSIS

We now study the stability of the base state given by E
~9! of the two-dimensional system in the plane (x,z) with
respect to infinitesimal disturbances in the same plane
this section“5(]x ,]z).

Linearization of Eqs.~7! around the base state, Eq.~9!
results in

“•v50, ~10a!

vt52“p1¹2v, ~10b!

PTt2w5¹2T, ~10c!

SCt1L21xw5¹2C1x¹2T, ~10d!

wherew is thez component of the fluid velocity fieldv.
01631
-

-
a-
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s

.

In

The boundary conditions, Eqs.~2! and ~3!, are rewritten
as

v50, Tz50, Cz50 at z50, ~10e!

w50, Tz1BT50, Cz2xBT50,

]zu1M“~T2C!50 at z51. ~10f!

Introducing normal perturbations in the form

~v,p,T,C!5exp~ ikx1vt !~ ṽ,p̃,T̃,C̃! ~11!

into Eqs.~10! with v being the growth rate of the perturba
tion with the wave numberk and using the streamfunctionc̃
to express the components of the two-dimensional flow fi
ṽ results in

c̃-822k2c̃91k4c̃5v~c̃92k2c̃ !, ~12a!

T̃92k2T̃5vPT̃1 ikc̃, ~12b!

C̃92k2C̃1x~ T̃92k2T̃!5vSC̃2 ikxL21c̃, ~12c!

c̃50, c̃850, T̃850, C̃850 at z50, ~12d!

c̃50, T̃81BT̃50, C̃82xBT̃50,

c̃91 ikM ~ T̃2C̃!50 at z51, ~12e!

where prime denotes derivative with respect toz.
We study here the case of the long-wavelength instab

of the system with poorly conducting boundaries. Accordi
to this we introduce the scaling

k5eK, v5e2v̄, B5e4b, c̃5eC̃, ~13!

wheree is a small parameter serving therefore as a meas
of supercriticality. The Marangoni number is expanded n
the stability threshold as

M5M01M2e21M4e41•••. ~14!

The dependent variables and the growth rate are also
panded into series of powers ofe:

~C̃,T̃,C̃!5~C0 ,T0 ,C0!1e2~C2 ,T2 ,C2!

1e4~C4 ,T4 ,C4!1•••, ~15!

v̄5v01e2v21e4v41•••. ~16!

The details of the following derivation are presented in A
pendix A.

The dependence of the growth rate on the Marang
number arising from the zero value of the characteristic
terminant, see Appendix A, is determined by the quadra
equation
3-3
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PSL0
21@P1S2S~x11!m0#L0112~11x1xL21!m050, ~17!

whereL0 is the rescaled growth rate of the disturbance defined asL05v0K22 andm05M0/48. The explicit expression fo
L0(m0) reads

L05
S~x11!m02~P1S!6AS2~x11!2m0

222S@S~12x!2P~11x!#m01~S2P!2

2PS
. ~18!
e
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Equation ~18! determines two instability modes, th
monotonic one and the oscillatory one, that will be next co
sidered separately.

A. Monotonic instability mode

SubstitutingL050 into Eq.~17!, we find that the mono-
tonic instability boundary is determined by the relation

M0548@11x~11L21!#21. ~19!

The critical value of the Marangoni numberM0 is positive if
x.x1 ,

x152
1

11L21
, ~20!

and negative ifx,x1. Recall that in the case of the standa
thermocapillary effect (s t52]s/]T* .0) the positive
~negative! Marangoni number corresponds to heating~cool-
ing! from below. In this paper we will consider only the ca
of positive Marangoni numbers.

Differentiating Eq.~17! with respect toM0, we find that
at the critical Marangoni number

dL0

dM0
5

@11x~11L21!#2

48P@11x~11L211L22!#
. ~21!

Thus, we find thatdL0 /dM0 is positive if x.x2,
he
q
.

be

01631
- x252
1

11L211L22
, ~22!

and negative ifx,x2. Note thatx1,x2,0 for any ~posi-
tive! values ofL.

We come to the conclusion that in the casex.x2 both
M0 anddL0 /dM0 are positive. This means that the grow
rate is negative forM below the critical valueM0 and posi-
tive above the critical value, i.e., the boundaryM5M0 is
indeed the threshold of the monotonic instability of the eq
librium state.

If the parameterx lies in the intervalx1,x,x2, then
M0.0 butdL0 /dM0,0. It follows thus thatM0 is actually
the boundary ofstabilizationof the monotonic mode which
is unstablebelowthat boundary and stableaboveit. We shall
see in the following that in the casex,x2 an oscillatory
instability appears with the threshold lower than that giv
by Eq. ~19!.

If x,x1, the instability appears for negative values ofM.
BecausedL0 /dM0,0, it is developed in the supercritica
region,M,M0,0.

Equation~A12! yields the expression for the growth ra
v2,

v25F2b~11x!1
M2

48
K22m0

222
1

15
m0

21K4G
3@P~11x!1Sx~11L21!#21, ~23!

where m05M0/48. Equation~23! can be rewritten in the
form
v25

H 2B~11x!1
M2M0

48
k2@11x~11L21!#22

1

15
k4P@11x~11L21!#J

e4P@11x~11L211L22!#
. ~24!
he
It follows from Eq. ~24! that the growth ratev̄ has a local
minimum at k50 and its value there is negative, i.e., t
instability is long-wavelength, when the denominator in E
~24! is positive and theB term in the numerator is negative
Thus, the condition for the long-wavelength instability to
monotonic isx.x2.
.

B. Oscillatory instability mode

The oscillatory instability boundary is determined by t
relation L056 iV0, where the oscillation frequencyV0 is
real. Using the dispersion relation~17!, we find that oscilla-
tory instability appears in the region21,x,x2 at
3-4
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M05
48~11L21!

L21~11x!
, ~25!

with the frequency

V05
1

S
A2

11x~11L211L22!

11x
. ~26!

Details of the derivation in the case at hand are given
Appendix B.

As in the case of the monotonic instability, the solvabil
condition at fourth order of approximation determines t
correctionv2 to the eigenvalue. We present here only t
expression for the real part of the coefficientv2 which de-
termines the growth rate of the oscillatory instability

Re@v2#52
b

2P
1

~11x!K2M2

96P
1

K4m0F~x!

120P2S
, ~27!

wherem05M0/48 and

F~x!5x@2~S22SP1P2!23~S1P!#1P~24S12P23!.
~28!

In order to ensure that short-wavelength disturbances de
one has to require thatF(x),0. Recall that the oscillatory
instability exists in the interval21,x,x2, where x2 is
determined by Eq.~22!. The functionF(x) varies linearly
between the values that it takes at the ends of this inter
namely,

F~21!5S~22S22P13!

and

F~x2!52
S2P~4S14P13!

S21SP1P2
,0. ~29!

Thus, the oscillatory instability is long-wavelength in th
whole interval of its existence, ifS.3/22P, which makes
F(21) negative. The Schmidt numberS is positive and typi-
cally large, and this condition is therefore satisfied.

It is important to emphasize that the frequency of osci
tions v0 at the onset of instability isO(e2), while the char-
acteristic growth rate of oscillations Re(v2) is O(e4). This
result will be employed in the nonlinear stability analysis
the oscillatory instability, see Sec. VI.

Figure 1 summarizes the results of linear stability ana
sis. It displays the neutral curves for both long-wavelen
monotonic and oscillatory instabilities forL21520,100, and
1000. For a fixed value ofL21 long-wavelength monotonic
instability sets in forx.x2. In the particular case of a pur
liquid corresponding tox50 the instability@30# is known to
be monotonic with the critical Marangoni numberM0548.
At x5x2 the long-wavelength oscillatory branch bifurcat
off the monotonic one and manifests the instability thresh
when 21,x,x2. This long-wavelength oscillatory insta
bility disappears whenx<21. The bifurcation structure re
mains the same for anyL21@1. The critical Marangoni
01631
n
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l,
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number for the oscillatory mode decreases withL21 reach-
ing a limiting curveM0548(11x)21 in the limit of L21

→`. On the other hand, the critical Marangoni number
the monotonic mode increases withL21 whenx,0 and de-
creases whenx.0.

IV. LONG-WAVELENGTH NONLINEAR ANALYSIS FOR
MONOTONIC INSTABILITY

In this section we study the nonlinear evolution of t
three-dimensional system in the regime where the instab
is long-wavelength. We use the technique of asymptotic
pansions to derive a set of nonlinear evolution equations
scribing the spatiotemporal dynamics of the system.

The set of dimensionless governing equations and bou
ary conditions, Eqs.~7!, is given by

ut1P21@~u•“ !u1wuz#52“p1¹2u1uzz, ~30a!

wt1P21@~u•“ !w1wwz#52pz1¹2w1wzz, ~30b!

“•u1wz50, ~30c!

PQ t1u•“Q1wQz2w5¹2Q1Qzz, ~30d!

SS t1L21~u•“S1wSz1xw!

5¹2S1Szz1x~¹2Q1Qzz!, ~30e!

u5w5Qz5Sz50 at z50, ~30f!

w5Sz2xBQ50, Qz1BQ50,

]zu1M“~Q2S!50 at z51. ~30g!

FIG. 1. Neutral curves for both long-wavelength monotonic a
oscillatory instabilities and for various values of the inverse Lew
numberL21. The thick and thin curves correspond to the mon
tonic and oscillatory modes, respectively. The solid, long-dash
and dot-dashed lines correspond toL21520,100, and 1000, respec
tively.
3-5
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The functionsQ(x,y,z,t) andS(x,y,z,t) constitute the de-
viations of temperature and concentration from their resp
tive equilibrium values, Eq.~9!, and vectoru is a two-
dimensional projection ofv onto the x-y plane. Here
subscripts denote the derivatives with respect to the co
sponding variables,“[(]x ,]y), ¹25]x

21]y
2 , and ¹4

5(¹2)2.
The Marangoni number near the critical point is rep

sented in the form

M5M01M2e21M4e41•••, ~31!

where M0 is the value of the Marangoni number at th
threshold of instability, ande is a small parameter servin
therefore as a measure of supercriticality.

Introduce the rescaled spatial and temporal variables

X5ex, Y5ey, Z5z, t5e4t. ~32a!

The Biot numberB is assumed to be small,

B5e4b. ~32b!

The appropriate scaling for the fluid velocity and press
fields $u,w,p% is chosen as

u5eU, w5e2W, p5P. ~32c!

The dependent variables are represented as the series in
ers ofe,

S U

W

Q

S

D 5S U(0)

W(0)

Q (0)

S (0)

D 1e2S U(2)

W(2)

Q (2)

S (2)

D 1e4S U(4)

W(4)

Q (4)

S (4)

D 1•••.

~33!

The details of the derivation are given in Appendix C.
The solution of the problem at zeroth order is

Q (0)5F~X,Y,t!, S (0)5G~X,Y,t!, ~34!

U(0)512m0Z~223Z!“~F2G!, ~35a!

W(0)512m0Z2~Z21!¹2~F2G!, ~35b!

P (0)5P~0!~x,y,t!5272m0~F2G!, ~36!

wherem05M0/48 andF andG are functions yet unknown to
be determined later.

The solvability condition gives the critical value of th
Marangoni number

M0548@11x~11L21!#21

thus

m05@11x~11L21!#21. ~37!

It follows from the solvability condition at second order th
functionsF andG are related to each other via
01631
c-

e-

-

e

ow-

G52x~11L21!@F2^^F&&#, ~38!

where^^F&&5L 21**F(X,Y,t)dXdY, and the integration is
carried out over the domain of periodicity in theX-Y plane
of the areaL. The relationship~38! shows that the averag
temperature disturbance per unit area^^F&& may change in
time due to imperfect insulation of the boundaries, howev
the average concentration disturbance per unit area^^G&&
5L 21**G(X,Y,t)dXdY does not change in time in th
absence of solute sources.

Applying the solvability condition at second order yield
the set of evolution equations in terms of the functionsT(0)

5F(X,Y,t) andE(X,Y,t), when the latter has the meanin
of the mean-flow stream function~for details, see Appendix
C!:

aP Ft1b~11x!F1g1¹2F1g2¹4F1g3“•~“F¹2F !

1g4¹2~ u“Fu2!2g5“•@“Fu“Fu2#

1g6~]XF]
Y
E2]YF]

X
E!

5PxL21~11L21!]t~^^F&&!, ~39a!

¹2E52
936

35P
~]YF¹2]XF2]XF¹2]YF !, ~39b!

where

a511x~11L211L22!, g15 1
48 M2~11x1xL21!2,

g25 1
15 ~11x1xL21!,

g35
11x1xL21

5P
1

11x~11L211L22!

10
,

g45
11x1xL21

10P
1

3@11x~11L211L22!#

5
,

g55 48
35 @11x~11L21!~11L22!#,

g652 1
3 @11x~11L211L22!#. ~39c!

Equations~39! will provide us with the details of the weakly
nonlinear dynamics of the system when the instability
monotonic. Note that Eqs.~39a! and ~39b! are similar to
those derived in Ref.@25# in the case of long-wavelengt
Marangoni instability in a pure liquid when the term̂̂F&&
vanishes.

As it is known from the simulation of the long
wavelength Marangoni convection in a pure liquid, the me
flow is of minor importance in the case of regular patter
but it is crucial for the dynamics of defects and for the d
velopment of a spatiotemporal chaos@31#. In the case of a
two-dimensional layer lying in theX-Z plane Eqs.~39! re-
duce to the single evolution equation
3-6
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aPFt1b~11x!F1g1]X
2F1g2]X

4F

1~ 1
2 g31g4!]X

2@~]XF !2#2 1
3 g5]X@~]XF !3#

5PxL21~11L21! ]t~^^F&&!. ~40!

It is important to emphasize that the dispersion relation g
ing the relationship between the linear growth rate of
disturbance and its dimensionless wave number, as obta
from Eq. ~40!, is identical to that given in Eq.~24!.

In the limit of large Prandtl number,P@1, Eqs.~39! re-
duce so that both theg6 term in Eqs.~39a! and~39b! vanish.
Under the transformation

t5c1t1 , F5c2F, ~X,Y!5c3~j,h!,

with

c15
4aPg2

g1
, c25S g5

g2
D 1/2

, c35S 2g2

g1
D 1/2

,

Eq. ~39a! is rewritten in the form

Ft1
1bF12 ¹1

2F1 ¹1
4F2“1•~“1F u“1F u2!

1s1“1•~“1F ¹1
2F !1s2¹1

2~ u“1F u2!

5xL21~11L21!a21 ]t1
~^^F &&!, ~41a!

where

s15
g3c3

24c1c2

aP
, s25

g4c3
24c1c2

aP
, b5

b~11x!c1

aP
,

~41b!

and “1[(]j ,]h), ¹1
25]j

21]h
2 , ¹1

45(¹1
2)2. Note that Eq.

~41a! is similar to that derived by Knobloch@24# for the case
of long-wavelength Marangoni instability in a pure liquid fo
infinite Prandtl number and for large times, so that the rig
hand side term there vanishes.

In what follows we will enforce periodic boundary cond
tions for F(X,Y,t) in the X-Y plane. Integrating Eq.~39a!
over the domain of periodicity yields

aP]t~^^F&&!1b~11x!^^F&&

5PxL21~11L21!]t~^^F&&!, ~42!

which reduces to

]t~^^F&&!52bP21^^F&&. ~43!

Thus, ^^F&&5const3exp(2bP21t) and ^^F&& vanishes in
the limit of large times.

V. BIFURCATION ANALYSIS

In this section we derive nonlinear amplitude equatio
for patterns of three kinds, namely, rolls, squares, and he
gons, and study their stability in the case of large Pran
number. To achieve this goal we notice from Eq.~41a! that
the critical value of the rescaled Biot number isb51, while
01631
-
e
ed

t-

s
a-
tl

the critical wave number isk51. We consider here the dy
namics of the system at large times, therefore the right-h
side term in Eq.~41a! vanishes.

A. Rolls versus squares

We denote asd a small parameter being a measure of t
distance between the critical and actual values of the B
numberb512d2, scale time ast̄5d2t1, and seek for a
solution of Eq.~41a! in the form of series in powers ofd,
F5dF11d2F21d3F31•••. Substituting these into Eq
~41a! one obtains at first order ind,

¹1
4F112¹1

2F11F150. ~44!

The solution for Eq.~44! is now chosen as

F15A1~ t̄ !cosj1B1~ t̄ !cosh, ~45!

whereA1( t̄) and B1( t̄) are real amplitude functions of th
planform. Note that the planform is a roll when eitherB1
50,A1Þ0 or A150,B1Þ0. The planform is square whe
B15A1.

Elimination of secular terms in the problem at third ord
in d yields a set of the amplitude equations in the form

dA1

dt̄
5A12G1A1

32G2A1B1
2 ,

dB1

dt̄
5B12G1B1

32G2B1A1
2 , ~46!

where

G15 1
36 @2714~s112s2!2#.0, G25 1

2 ~122s1
214s1s2!.

~47!

In the particular case of the roll pattern in thej direction,
A1Þ0,B150 the set of amplitude equations, Eq.~46!, re-
duces to a single equation

dA1

dt̄
5A12G1A1

3 . ~48!

A similar equation is obtained in terms ofB1 for the rolls in
the h direction. As the coefficient of the cubic term of E
~48! is positive for all values of the Soret numberx and the
inverse Lewis numberL21, roll patterns bifurcate supercriti
cally. The amplitude of the corresponding steady roll patt
is obtained byA151/A314(s112s2)2/9.

In the particular case of the square pattern,A15B1, the
amplitude equation obtained from the reduction of Eqs.~46!
is

dA1

dt̄
5A12~G11G2!A1

3 , ~49!

where
3-7
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G11G25 1
36 @45232s1

2188s1s2116s2
2#. ~50!

Substitutings1 and s2 from Eq. ~41b! into Eq. ~50! and
taking the limit of large inverse Lewis numberL21, Eq.~50!,
yields

G11G25
1

25P2
@161x2L221302Px2L23

1P2~11251268x2L24!#, ~51!

which is positive. Thus, in the limit of largeL21 square
patterns bifurcate supercritically, and the amplitude of
emerging pattern isA15B15(G11G2)21/2.

We now turn to the study of stability of both roll an
square patterns. The fixed points of the dynamical sys
@Eqs.~46!# (A156G1

21/2,B150) and (A150,B156G1
21/2)

represent roll patterns, while@A15B156(G11G2)21/2#
represents a square pattern.

Linear stability analysis of both the roll patterns reve
that they can be stable only when 0,G1,1. However, in
the relevant limit of large inverse Lewis numbersL21,

12G152 169
448M2

2x4L281O~L27!,0, ~52!

which implies that the roll patterns are unstable.
Stability analysis of the square pattern shows that one

the eigenvalues of the stability matrix is always negati
while the other is negative whenG2,G1. In the physically
relevant limit ofL21@1,

G22G15 45
8 M2

2x4L281O~L27!,0. ~53!

Thus, the square pattern is stable in the limit of largeL21.
This result obtained for the case of binary liquids match
that obtained for pure liquids in the case of small Biot nu
bers.

B. Hexagons

Let us now choose a different definition ofd by b51
2d and a different scaling of time according tot̄5udut1,
while the sought form of the solution remains the same a
Sec. V A.

We now follow the analysis presented by Shtilman a
Sivashinsky@25# for stability of hexagonal patterns obtaine
as a solution of Eq.~44! at first order of expansion ind,

F15A1~ t̄ !S cosj12 cos
j

2
cos

A3h

2 D , ~54!

whereA1( t̄) is a real function of timet̄, yet unknown.
Elimination of secular terms in the problem at third ord

in d yields

dA1

dt̄
5A112l2A1A22l3A1

3 , ~55!

where
01631
e

m

of
,

s
-

in

d

r

l25
s22s1

2
, l35

9

4
1

s2~97s11113s2!

72
1

s1~s112s2!

9
,

~56!

andA2( t̄) is a real amplitude of the general solution of E
~44! at second order ind.

Defining a functionA( t̄) via A5A11dA2 one can com-
bine Eq.~55! with the solvability condition at second orde
in d to obtain

dA

dt̄
5sgn~d!A1l2A22dl3A3, ~57!

being accurate too(d2).
Turning back to the values of timet1 and a5dA being

the amplitude of the hexagonal pattern one obtains the
plitude equation in the form

da

dt1
5da1l2a22l3a3. ~58!

It is found that in the limit ofL21@1 the coefficientl3 is
positive.

It follows from Eq. ~58! that the amplitudeas of steady
hexagonal patterns satisfies the relationship

d5l3as
22l2as . ~59!

Thus two possible steady hexagonal patterns can emerg

d>D[2
l2

2

4l3
. ~60!

In the limit of large inverse Lewis numbersL21 one obtains

D52
225

9508
1

1 070 685

45 201 032

L

P
1O~L2!. ~61!

The stability analysis in the framework of the amplitud
equation~58! shows that in the subcritical regiond,0 one
of the solutionsas for Eq. ~59! is linearly stable, as well as
the trivial solutiona50 corresponding to the quiescent sta
while the other solution of Eq.~59! is unstable. In the super
critical region d.0 both of the solutions,as , are stable,
while the solutiona50 is unstable. Note, however, that th
ansatz~54! and the amplitude equation~58! ignore the phase
disturbances that make one of the solutionsas unstable. For
a general discussion on stability of hexagonal patterns
reader is referred to Ref.@32#.

We conclude with the study of the flow direction in th
stable hexagonal patterns we have investigated here. Acc
ing to Eq.~54!, the sign ofF1 in the center of the hexago
positioned aroundj5h50 coincides with the sign ofA1,
while the stable branch of the hexagons amplitude, if
phase disturbances are taken into account, hasA1.0 when
l2.0 andA1,0 whenl2,0. As follows from Eqs.~56!
and ~41b! l25(g42g3)c3

24c1c2 /(2aP), and therefore the
sign of l2 coincides with that of g42g352(11x
1xL21)/10P1@11x(11L211L22)#/2. In the domain of
3-8
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monotonic instability, x.x1521/(11L211L22), 1
1x(11L211L22).0, and 11x1xL215@11x(11L21

1L22)#2xL22.0.
Thus, we can conclude that the sign ofg42g3 depends

on P. If P,P* ,P* 50.2(11x1xL21)/@11x(11L21

1L22)#, thenl2,0, a cold spot emerges in the center
the hexagonal cell, and the flow is directed downwards
P.P* , a hot spot emerges in the center of the hexago
cell, and the flow is directed upwards. Because in the ph
cally relevant case ofL21@1, P* '0.2L!1, and therefore
W(j50,h50).0 for practically anyP. In the opposite~un-
physical! limit of L@1 we reproduce the resultP* 50.2
known in the case of a pure liquid.

VI. LONG-WAVELENGTH NONLINEAR ANALYSIS FOR
OSCILLATORY INSTABILITY

A. Derivation of amplitude equations

The present section is devoted to the derivation of
amplitude equations governing the oscillatory instability. W
shall restrict ourselves to the consideration of tw
dimensional flows in thex-z plane. Using the streamfunctio
c and eliminating the pressure, we rewrite the system
equations~30! in the form

¹2c t1P21@cz¹
2cx2cx¹

2cz#5¹4c, ~62a!

PQ t1czQx2cxQz1cx5¹2Q, ~62b!

SS t1L21~czSx2cxSz2xcx!5¹2S1x¹2Q,
~62c!

c5cz5Qz5Sz50 at z50, ~62d!

c5Sz2xBQ50, Qz1BQ50,

czz1M ~Qx2Sx!50 at z51. ~62e!

In this section¹25]x
21]z

2 .
According to the results of the linear theory, in the limit

small Biot numbers, Eq.~32b!, the oscillatory instability
takes place near the threshold in a narrow interval of sm
f
If
al
i-

e

-

f

ll

wave numbers. Similar to the case of the monotonic insta
ity, we expand the Marangoni number in the form of Eq.~31!
and introduce the rescaled spatial variables

X5ex, Z5z. ~63!

In contradistinction to the case of the monotonic instabili
where it was sufficient to use only one ‘‘slow’’ time scal
t5e4t, the description of the oscillatory instability shou
be based on the consideration of two slow time scales,

T5e2t, t5e4t. ~64!

Indeed, it was shown in Sec. III that the frequency of osc
lations isO(e2), while the characteristic growth rate of os
cillations isO(e4). The streamfunction is rescaled as

c5eC. ~65!

The details of the derivation are presented in Appendix D
The solution of the equations at zeroth order is given

Q (0)5F~X,T,t!, S (0)5G~X,T,t!,

C (0)512m0~FX2GX!~Z22Z3!, ~66!

whereF and G are amplitude functions, yet unknown, an
m05M0/48 is the rescaled value of the critical Marango
number.

Substituting Eq.~25! for the leading-order threshold o
the oscillatory instability, we can rewrite the solvability co
dition at second order as

FT5
L21x21

L21P~11x!
FXX1m0P21GXX , ~67!

GT5x
L21121x

L21P~11x!
FXX2

L21x21

L21P~11x!
GXX . ~68!

Substituting Eqs.~66! and the solution of the problem a
second order into the solvability conditions at fourth ord
we obtain the following amplitude equations:
QT1Ft5
12m0

P
QXX1

m0

P
RXX2

b

P
F2

M2

48P
~FXX2GXX!2

m0
2

20P
~1314P21112x!~FX

2 !XX

1
m0

2

10P
~714P2116L2116x!~FXGX!XX2

m0
2

20P
~114P21112L21!~GX

2 !XX1
48m0

2

35P
@FX~FX2GX!2#X

1
m0

20PS
@~S2x!FXXXX2PGXXXX#2

m0

10P F12
m0~11x!

3
1

m0~11x!

2P
2

m0x

3
L21G~FXXXX2GXXXX!, ~69!

016313-9
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RT1Gt5xS 1

S
1

m0

P DQXX1S 1

S
2

m0x

P DRXX1
M2x

48P
~FXX2GXX!1

xm0
2

20P S 11
4

P
113L21D ~GX

2 !XX

1
m0

2x

20P S 131L211
4

P
112x D ~FX

2 !XX2
m0

2x

10P S 717L211
4

P
16x D ~FXGX!XX1

48m0
2

35P
@FXGX$~L2112x!FX

2~x12L21!GX%#X1
144m0

2

35P
~L21GX

2GXX2xFX
2FXX!1

m0x

20PS
@GXXXX1~x2L21!FXXXX#

1
m0x

10P F11
m0

2P
~11x!2

m0

3
~11x1xL21!G~FXXXX2GXXXX!. ~70!
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The solvability conditions forQ andR determine the evo-
lution of the amplitudesF andG in the slow time scalet.

Note that a similar approach was used by Cox@29# in the
case of Rayleigh-Be´nard convection.

B. Traveling and standing waves

The crucial issues that can be addressed by mean
weakly nonlinear amplitude equations are the type of bif
cation ~supercritical vs subcritical! and the stability of spa-
tially periodic traveling and standing waves. These questi
are considered in the present section.

The leading-order amplitude equations, which descr
the oscillations on the time scale characterized by the v
able T, are linear. Thus, any superposition of waves w
arbitrary wave numbers satisfy these equations. We res
ourselves tospatially periodicsolutions

F~X,t,T!5F1~t!ei (KX2V0K2T)1F21~t!ei (2KX2V0K2T)

1c.c., ~71!

G~X,t,T!5a2@F1~t!ei (KX2V0K2T)1F21~t!ei (2KX2V0K2T)#

1c.c., ~72!

where V0 and a2 are determined by Eqs.~26! and ~B1!,
2p/K is the spatial period of the wave,F1(t) and F21(t)
are amplitude functions, yet undetermined, and c.c. den
complex conjugate.

Substituting Eqs.~71! and ~72! into Eqs. ~69! and ~70!,
yields a nonhomogeneous linear system for functionsQ and
R. The corresponding solutions can be found in the form

Q5 (
m523

3

(
n523

3

Qn,m~t!ei (mKX2nV0K2T),

R5 (
m523

3

(
n523

3

Rn,m~t!ei (mKX2nV0K2T).

For the pairs (Q1,1,R1,1) and (Q21,1,R21,1) one obtains sets
of linear algebraic equations with determinants equal to z
The corresponding solvability conditions yield a set of no
linear amplitude equations
01631
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dF1

dt
5~v22k1uF1u22k2uF21u2!F1 , ~73!

dF21

dt
5~v22k1uF21u22k2uF1u2!F21 , ~74!

wherev25v2r1 iv2i is the linear complex growth rate@v2r
determined by Eq.~27!#, k15k1r1 ik1i and k25k2r1 ik2i
are complex Landau constants. The real parts of the Lan
constantsk1r andk2r determine the type of bifurcation an
govern the selection of a specified kind of waves, either tr
eling or standing one. Indeed, taking

F15r 1eiu1, F215r 21eiu21, ~75!

wherer j , u j , j 561, are real, and substituting Eq.~75! into
Eqs.~73! and ~74!, one finds

dr1

dt
5~v2r2k1r r 1

22k2r r 21
2 !r 1 , ~76!

dr21

dt
5~v2r2k1r r 21

2 2k2r r 1
2!r 21 ~77!

~equations foru j , j 561, are irrelevant!. A straightforward
stability analysis shows that the standing wave solutionr 1

5r 215Av2r /(k1r1k2r) is stable if k1r1k2r.0, k1r

.k2r , while the traveling wave solutionsr 15Av2r /k1r ,
r 2150, and r 150, r 215Av2r /k1r are stable ifk2r.k1r
.0.

The direct computation yields

k1r5
24K4L~11L !

35P~11x!
P2@2~11x!1~312x2!L211xL22#,

k2r52k1r .

Recall that the oscillatory instability takes place when

x,x252
1

11L211L22
,0.
3-10
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In the relevant case ofL!1, we find that the bifurcation o
traveling and standing wave solutions is supercritical only
x belongs to the narrow interval

x* ,x,x2 , x* 523L1O~L2!. ~78!

In the latter case, standing waves are unstable, thus the
eling waves are the selected kind of flow. Otherwise, a s
critical instability of the equilibrium state, which cannot b
studied by means of a weakly nonlinear theory, takes pla

VII. DISCUSSION AND CONCLUSIONS

We now discuss the distinctions between the amplitu
equations obtained for the Marangoni convection in a bin
liquid and those obtained for a pure fluid.

The main specific feature of the Marangoni convection
a binary liquid is the existence ofthreeslowly varying fields,
namely, the fields of temperatureF, concentrationG, and the
mean flowE. In the case of a pure liquid, only two fields,F
and E, are present. A peculiarity of the concentration is
global conservation due to the absence of solute source

In the case of the monotonic instability, the fieldsF andG
are directly related to each other by the expression give
Eq. ~38!. Therefore, the fieldG can be easily eliminated from
the set of governing equations, and the latter are simila
those obtained for a pure fluid~see Refs.@25,26#!, except for
the additionalglobal-control term on the right-hand side o
Eq. ~39a!, which turns the amplitude equation into an int
grodifferential one. However, this feature of the amplitu
equations~39! does not affect the long-term dynamics of t
system, because of the relation~43!.

In the case of the oscillatory instability, the leading-ord
oscillations are characterized by atime delaydetermined by
the complexparametera2 @see Eq.~B1!#. Two-component
functions (F,G) and (Q,R) are used for the closed descri
tion of the system evolution. In the case of the Rayleig
Bénard convection, such functions have been used by
@29#. Note, however, that the final Landau equations~73! and
~74! are written in terms of thescalar amplitudesF1 and
F21, because the spatial Fourier components of the fieldF
andG are not independent. Similar amplitude equations w
earlier derived in the context of the Rayleigh-Be´nard convec-
tion by Pismen@28#.

This paper presents linear and weakly nonlinear analy
and an investigation of pattern formation in long-wavelen
Marangoni instability in a binary liquid layer open to th
ambient gas phase with poorly conducting boundaries, w
the Soret effect is taken into account. The liquid layer
assumed to be sufficiently thin and with sufficiently hig
surface tension, so that the mathematical model that neg
both buoyancy-driven convection and deformation of
liquid-gas interface is valid. Although most of the results a
presented for general values of the dimensionless param
of the problem, the physically relevant range of the inve
Lewis number isL21@1.

Linear stability analysis reveals that both monotonic a
oscillatory modes of instability exist here. It is found th
monotonic instability sets in when the Soret numberx ex-
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ceeds the valuex252(11L211L22)21, x.x2, and the
critical value of the Marangoni number isM0,mon548@1
1x(11L21)#21. The oscillatory instability sets in when
21,x,x2 and the critical value of the Marangoni numb
is M0,osc548(11L)(11x)21, while the frequency at the
threshold is determined by Eq.~26!. In the intervalx,x1
52(11L21)21 the monotonic mode is unstable when t
value of the Marangoni number is below the critical val
which is negative.

Long-wavelength nonlinear analysis of both monoton
and oscillatory instabilities yields sets of nonlinear evoluti
equations that govern the spatiotemporal dynamics of
system. In the case of monotonic instability, as in the cas
a pure liquid, one of the two equations is of evolution typ
while the other is elliptic and describe convective effects
the layer that vanish when the Prandtl number of the liquid
large. Bifurcation analysis based on the evolution equat
for a binary liquid with large Prandtl number yields amp
tude equations for roll, square and hexagon patterns.
shown that roll patterns are found to be unstable, wh
square patterns are stable in the physically relevant limi
large L21. Hexagonal patterns are found to bifurcate tra
scritically, and a steady stable hexagonal pattern is poss
We expect that the hexagonal pattern appears in the sub
cal region corresponding to Eq.~60!, and it is replaced by the
square pattern at a finite value ofM2M0. Because the sta
bility analysis based on amplitude equations is not relia
for finite M2M0, we postpone the elucidation of this que
tion to the future strongly nonlinear analysis. In the case
oscillatory instability the set of nonlinear equations consi
of two equations of evolution type. It is found that bifurc
tion of both standing and traveling waves is supercritical
the rangex* ,x,x2, where x* 523L1O(L2). In this
range of the Soret number standing waves are found to
unstable, while traveling waves appear to be stable. Num
cal study of the nonlinear evolution equations derived in t
paper is not attempted here and will be the scope of
future work.

Finally, in contrast with the case of Marangoni convecti
in pure liquids at the present time there are no experime
studies on the Marangoni convection in thin layers of bina
liquids available in the literature. Based on the importance
these systems in the process of crystal growth such exp
ments would be more than desirable. We hope that the res
obtained in this paper will stimulate the researchers to ca
out experiments with relevant binary liquid systems and
compare their findings with those presented here.

ACKNOWLEDGMENTS

The research was partially supported by the Israel Scie
Foundation founded by the Israel Academy of Scien
through Grant No. 31/03-15.3, the Smoler Research Fu
the Fund for the Promotion of Research at the Technion,
ICOPAC Research Network of the European Union~Con-
tract No. HPRN-CT-2000-00136!. A.A.N. acknowledges the
support of the E. and J. Bishop Research Fund.

APPENDIX A: LINEAR STABILITY ANALYSIS—
MONOTONIC INSTABILITY

The resulting set of equations and boundary condition
written as
3-11
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C̃-822e2K2C̃91e4K4C̃5v̄e2~C̃92e2K2C̃!, ~A1a!

T̃92e2K2T̃5v̄e2PT̃1 i e2KC̃, ~A1b!

C̃92e2K2C̃1x~ T̃92e2K2T̃!5v̄e2SC̃2 i e2KxL21C̃,
~A1c!

C̃50, C̃850, T̃850, C̃850 at z50, ~A1d!

C̃50, T̃81be4T̃50, C̃82e4xbT̃50,

C̃91 iK ~M01e2M21••• !~ T̃2C̃!50 at z51. ~A1e!

We integrate Eqs.~A1b! and ~A1c! over the interval 0<h
<1 and the resulting integral relations serve us as solvab
conditions

e2v̄S ^PT̃&

^SC̃& D 1 iK e2S 1

2xL21D ^C̃&1e2K2S ^T̃&

^C̃1xT̃&D
5e4bS 2T̃uz51

0 D , ~A2!

where^ f &[*0
1f dh.

At zeroth order of approximation one obtains

C0-850, ~A3a!

T0950, ~A3b!
n-

01631
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C091xT0950, ~A3c!

C050, C0850, T085C0850 at z50, ~A3d!

C050, C091 iKM 0~T02C0!50, T0850, C0850

at z51. ~A3e!

The solution of the problem, Eqs.~A3!, is given by

C05 1
4 iKM 0~a12a2!z2~12z!, T05a1 , C05a2 ,

~A4!

wherea1 anda2 are constants yet unknown to be determin
later.

At second order the equations and boundary conditi
read

C2-822K2C095v0C09 , ~A5a!

T292K2T05 iKC01v0PT0 , ~A5b!

C292K2C01x~T292K2T0!52 iKxL21C01v0SC0 ,
~A5c!

C250, C2850, T2850, C2850 at z50, ~A5d!

C250, C291 iKM 0~T22C2!1 iKM 2~T02C0!50,

T2850, C2850 at z51. ~A5e!

The solvability condition, Eq.~A2!, at second order of
approximation yields
A1S a1

a2D 5S 0

0D with A15S L0P112m0 m0

2L0Px1m0x~11L21! L0S112m0x~11L21!
D , ~A6!
wherem05M0/48 andv05L0K2.
Equation ~A6! yields the relationship between the co

stantsa1 anda2 in the form

a252x~11L21!a1 . ~A7!

In what follows we will choosea151, so thata252x(1
1L21).

The solutions of Eqs.~A5! read

C2548iK 3~ 1
24 z42 1

40 z52 1
60 z3!

1 iK @12~b12b2!m01 1
4 M2m0

21#~z22z3!, ~A8a!

T25b1212K2~ 1
12 z42 1

20 z52 1
24 z2!, ~A8b!
C25b2112x~11L21!K2~ 1
12 z42 1

20 z52 1
24 z2!,

~A8c!

whereb1 andb2 are integration constants.
The solvability condition, Eq.~A2!, at fourth order of

approximation yields

A2S b1

b2D 5r with A25S 12m0 m0

x~11m0L21! 12xm0L21D
~A9!

and
3-12



e

Eq.

lv-

l
va-
-

q.

LONG-WAVELENGTH THERMOCAPILLARY INSTABILITY WITH . . . PHYSICAL REVIEW E 69, 016313 ~2004!
r[S r 1

r 2D
5S M2

48
m0

212
K2

15
2~Pv21b!K22

2
M2

48
xL21m0

211
K2

15
xL211Sv2x~11L21!K22D .

~A10!

As operatorA2 is singular, Eq.~A9! has a solution if and
only if vector r is orthogonal to vectors,

s5S 11x

21 D , ~A11!

being an eigenvector corresponding to a zero eigenvalu
the adjoint operatorA2

T ,

r•s50. ~A12!

APPENDIX B: LINEAR STABILITY ANALYSIS—
OSCILLATORY INSTABILITY

The constantsa1 anda2 in Eq. ~A7! can be chosen as

a151, a25
12L21x2 iV0S~x11!

11L21
. ~B1!

The solutions of Eqs.~A5! in the case of the oscillatory
instability read

C25 iK 3~11 iV0P!~21 iV0!S 2
3z5

5
1z4D

1 iK 3~11 iV0P!H 6

5 F11x~11L211L22!

L21~11x!
2

iV0

2 Gz2

2F6

5

11x~11L211L22!

L21~11x!
1

4

5
2

iV0

5 Gz3J
1F12iK ~11L21!

L21~11x!
~b12b2!

1
iKM 2

4

L21~11x!~11 iV0P!

11L21 G ~z22z3!, ~B2a!

T25b1212K2~11 iV0P!~ 1
12 z42 1

20 z52 1
24 z2!,

~B2b!

C25b2112x~11L21!K2~11 iV0P!~ 1
12 z42 1

20 z52 1
24 z2!,

~B2c!

whereb1 andb2 are integration constants.
01631
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APPENDIX C: LONGWAVE NONLINEAR STABILITY
ANALYSIS—MONOTONIC INSTABILITY

In terms of the variables and parameters defined by
~32!, Eqs.~30! read

e4Ut1e2P21@~U•“ !U1W]ZU#52“P1e2¹2U1]ZZU,
~C1a!

e4Wt1e2P21@~U•“ !W 1W]ZW#

52e22]ZP1e2¹2W1]ZZW, ~C1b!

“•U1]ZW50, ~C1c!

e4PQt1e2~U•“Q1W]ZQ2W!5e2¹2Q1]ZZQ,
~C1d!

e4SSt1e2L21~U•“S1W]ZS1xW!

5e2¹2S1]ZZS1xe2¹2Q1x]ZZQ, ~C1e!

U5W5]ZQ5]ZS50 at Z50, ~C1f!

W5]ZS2xBQ50, ]ZQ1BQ50,

]ZU1M“~Q2S!50 at Z51, ~C1g!

where hereafter“[(]X ,]Y) and¹25]X
21]Y

2 .
We integrate Eqs.~C1d! and ~C1e! over the interval 0

<Z<1 and the resulting integral relations serve us as so
ability conditions

Pe4]t^Q&1e2^“U•“Q1W]ZQ1W&2e2^¹2Q&

2~]ZQ!uZ50
Z5150, ~C2a!

Se4]t^S&1e2L21^“U•“S1W]ZS1xW&

2e2^¹2S1x¹2Q&50, ~C2b!

where here on̂ f &[*0
1f dZ. It should be noted that the tota

contribution of the two terms containing the second deri
tives with respect toZ in Eq. ~C2! vanishes due to the bound
ary conditions atZ51.

At zeroth order of approximation reckoning from E
~C1b! that ]zP

(0)50, one obtains

]ZZU(0)5“P (0), ]ZZW(0)5]ZP (2), “•U~0!1]ZW~0!50,
~C3a!

]ZZQ (0)50, ]ZZS (0)1x]ZZQ (0)50, ~C3b!

U(0)50, W(0)50, ]ZQ (0)50, ]ZS (0)50 at Z50,

W(0)50, ]ZU(0)1M0“~Q (0)2S (0)!50, ]ZQ (0)50,

]ZS (0)50 at Z51. ~C3c!

The solvability condition, Eq.~C2!, at the zeroth order of
approximation yields
3-13
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A V5S 0

0D with A5S 12m0 m0

x~11L21m0! 12xL21m0
D ,

V5¹2S F

GD . ~C4!

Equation~C4! yields the relationship between the functio
F andG in the form

G52x~11L21!@F2^^F&&#, ~C5!

where^^F&&5L 21**F(X,Y,t)dXdY and the integration is
carried out over the domain of periodicity in theX-Y plane
of the areaL. The relationship~C5! shows that the averag
temperature disturbance per unit area^^F&& may change in
time due to imperfect insulation of the boundaries, howe
the average concentration disturbance per unit area!G@
5L 21**G(X,Y,t)dXdY does not change in time in th
absence of solute sources. It is noteworthy that Eq.~C5!
follows from Eq.~C4! when the conditions of periodicity in
the X-Y plane and boundedness ofF andG are imposed.

At second order the equations and boundary conditio
Eqs.~C1!, read

]ZZU(2)52¹2U(0)1“P (2)1P21@~U(0)
•“ !U(0)

1W(0)]ZU(0)#, ~C6a!

]ZZW(2)52¹2W(0)1]ZP (4)1P21@~U(0)
•“ !W(0)

1W(0)]ZW(0)#, ~C6b!

“•U(2)1]ZW(2)50, ~C6c!

]ZZQ (2)52¹2Q (0)1~U(0)
•“Q (0)1W(0)]ZQ (0)2W(0)!,

~C6d!

]ZZS (2)52¹2S (0)2x~¹2Q (0)1]ZZQ (2)!

1L21~U(0)
•“S (0)1W(0)]ZS (0)1xW(0)!,

~C6e!

U(2)50, W(2)50, ]ZQ (2)50, ]ZS (2)50 at Z50,
~C6f!

W(2)50,

]ZU(2)1M0“~Q (2)2S (2)!1M2“~Q (0)2S (0)!50,

]ZQ (2)50, ]ZS (2)50 at Z51. ~C6g!

The solutions of Eqs.~C6! read

Q (2)5Q~X,Y,t!1~ 1
6 2 1

2 Z2!¹2F1m0p3“H•“F

1m0p4¹2H, ~C7a!
01631
r

s,

S (2)5R~X,Y,t!1~ 1
6 2 1

2 Z2!¹2~xF1G!

1m0L21p3“G•“H2xL21m0p4¹2H2xQ (2),

~C7b!

U(2)5S 1

2
Z22ZD“J124m0p5“¹2H1Z“@48m0R

248m0~11x!Q2M2H#1
72m0

2

P
p6“~ u“Hu2!

1
144m0

2

P
p7“H¹2H1

144m0
2

5
Z@L21

“~“H•“G!

2~11x!“~“H•“F !#, ~C7c!

W(2)52
2

5
m0p8¹4H1Z2¹2F1

2
M2H124m0$~11x!Q

2R%G2
12m0

2

35P
@p9¹2~ u“Hu2!1p2“•~¹2H“H !#

1
72m0

2

5
Z2¹2@~11x!~“H•“F !2L21~“H•“G!#

1p1¹2J, ~C7d!

P (2)512m0~3Z222Z!¹2H1J, ~C7e!

whereH5F2G,

p15 1
2 Z22 1

6 Z3, p25214Z5128Z6212Z7228Z2,

p354Z323Z42 2
5 , p45Z42 3

5 Z52 1
10 ,

p55 1
4 Z42 1

3 Z31 1
15 Z, p65 1

3 Z42 3
5 Z51 3

10 Z62 2
15 Z,

p752 1
6 Z41 2

5 Z52 1
5 Z62 2

15 Z,

p853Z525Z412Z2, p9514Z5221Z619Z7214Z2,

andJ[J(X,Y,t), which satisfies the equation

¹2J52
m0

2

35P
@432¹2~ u“Hu2!1936“•~¹2H“H !#

2 3
2 M2¹2H172m0¹2@R2~11x!Q#

1 216
5 m0

2¹2@L21
“H•“G2~11x!“H•“F#.

~C8!

The solvability condition, Eq.~C2!, at fourth order ine
written in vector form yields
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S 0

0D 5]tS PF

SGD 1S bQ (0)

0 D 1S ^U(0)
•“Q (2)1W(0)]ZQ (2)2W(2)1“Q (0)

•U(2)2¹2Q (2)&

^L21~U(0)
•“S (2)1W(0)]ZS (2)1xW(2)1“S (0)

•U(2)!2¹2~S (2)1xQ (2)!&
D . ~C9!
th

-
gl

up

nd

the
ces,

o-
Equation~C9! can be recast into the form

A2 ¹2S Q

RD 5r , ~C10!

where

A25S 12m0~11x! m0

m0x~11x!L21 12m0xL21D . ~C11!

The Fredholm alternative for Eqs.~C4! and~C10! yields the
orthogonality of vectorsr ands,

r•s50 wheres5S 11x

21 D f~X,Y,t! ~C12!

is the eigenvector corresponding to a zero eigenvalue of
adjoint operatorA2

T .
Equation~C8! can be rewritten as

“J52
m0

2

35P
@432“~ u“Hu2!1936¹2H“H2 3

2 M2“H

172m0“@R2~11x!Q#

1 216
5 m0

2
“@L21

“H•“G2~11x!“H•“F#1 Ĵ,

~C13!

where“• Ĵ50. The vectorĴ is divergence-free and two
dimensional, and thus can be written in terms of a sin
function E[E(X,Y,t) as Ĵ5(]YE,2]XE).

APPENDIX D: LONG-WAVELENGTH NONLINEAR
STABILITY ANALYSIS-OSCILLATORY INSTABILITY

Equations~62! are rewritten in the rescaled variables
to O(e4) terms in the following form:

e2CZZT1e4~CZZt1CXXT!1P21@e2~CZCZZX2CXCZZZ!

1e4~CZCXXX2CXCXXZ!#

5CZZZZ12e2CXXZZ1e4CXXXX, ~D1a!

e2PQT1e4PQt1e2CZQX2e2CXQZ1e2CX

5e2QXX1QZZ , ~D1b!

e2@SST1L21~CZSX2CXSZ2xCX!#1e4SSt

5e2SXX1SZZ1x~e2QXX1QZZ!, ~D1c!
01631
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e

C5CZ5QZ5SZ50 at Z50, ~D1d!

C5SZ2e4xbQ50, QZ1e4bQ50, CZZ1M ~QX

2SX!50 at Z51. ~D1e!

The boundary-value problem, Eqs.~D1!, is solved using
the asymptotic expansion in the form Eq.~33!. At zeroth
order of approximation we obtain

CZZZZ
(0) 50, ~D2a!

QZZ
(0)50, ~D2b!

SZZ
(0)1xQZZ

(0)50, ~D2c!

C (0)50, CZ
(0)50, QZ

(0)50, SZ
(0)50 at Z50,

~D2d!

C (0)50, CZZ
(0)1M0~QX

(0)2SX
(0)!50, QZ

(0)50,

SZ
(0)50 at Z51. ~D2e!

At second order the boundary-value problem reads

CZZZZ
(2) 12CXXZZ

(0) 5CZZT
(0) 1P21~CZ

(0)CZZX
(0) 2CX

(0)CZZZ
(0) !,
~D3a!

QZZ
(2)1QXX

(0)5PQT
(0)1CZ

(0)QX
(0)1CX

(0) , ~D3b!

SZZ
(2)1SXX

(0)1x~QZZ
(2) 1QXX

(0)!

5SST
(0)1SP21~CZ

(0)SX
(0)2xCX

(0)!, ~D3c!

C (2)50, CZ
(2)50, QZ

(2)50, SZ
(2)50 at Z50,

~D3d!

C (2)50, CZZ
(2)1M0~QX

(2)2SX
(2)!1M2~QX

(0)2SX
(0)!50,

QZ
(2)50, SZ

(2)50 at Z51. ~D3e!

The solvability condition for the subsystem of equations a
boundary conditions determiningQ (2) and S (2) gives the
following leading-order amplitude equations that govern
evolution of the temperature and concentration disturban
F andG, on the time scaleT5e2t,

FT52P21~m021!FXX1m0P21GXX , ~D4!

GT5x~S211m0P21!FXX1~S212xm0P21!GXX ,
~D5!

where m05M0/48. This linear system of equations repr
duces the results of the linear stability analysis, Eq.~27!.

The solution of the boundary-value problem~D3! reads
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Q (2)5Q~X,T,t!1m0S 2
3

5
Z51Z42

1

2
Z21

1

15D
3~FXX2GXX!1m0S 23Z414Z32

2

5DFX~FX2GX!,

~D6a!
e

01631
S (2)5R~X,T,t!1x~11L21!m0S 3

5
Z52Z41

1

2
Z22

1

15D
3~FXX2GXX!1m0P21S 23Z414Z32

2

5D
3~FX2GX!~SGX2xPFX!, ~D6b!
C (2)5
Z32Z2

140P
$GX@35M2P148m0

2
„19121S121P~11x!1q1~Z!…FXX248m0

2~19142S1q1~Z!!GXX#

1FX@235M2P248m0
2
„19142P~11x!1q1~Z!…FXX148m0

2
„19121S121P~11x!1q1~Z!…GXX#

128m0@60P~RX2QX!1Pq2~Z!„~P212xS21!FXXX2S21GXXX!

2„2Pq2~Z!22Pm0~11x1xL21!1m0~11x!q2~Z!…~FXXX2GXXX!#%, ~D6c!
-
where q1(Z)526Z26Z218Z326Z4,q2(Z)5312Z
23Z2, Q(X,T,t), andR(X,T,t) are unknown functions.

At fourth order we shall write only the boundary-valu
problem forQ (4) andS (4),

QZZ
(4)1QXX

(2)5PQT
(2)1PQt

(0)1CZ
(2)QX

(0)1CZ
(0)QX

(2)

2CX
(0)QZ

(2)1CX
(2) , ~D7a!

SZZ
(4)1SXX

(2)1x~QZZ
(4) 1QXX

(2)!

5SST
(2)1SSt

(0)1L21~CZ
(2)SX

(0)1CZ
(0)SX

(2)

2CX
(0)SZ

(2)2xCX
(2)!, ~D7b!

QZ
(4)50, SZ

(4)50 at Z50, ~D7c!

QZ
(4)1bQ (0)50, SZ

(4)2xbQ (0)50 at Z51.
~D7d!
Integrating equations overZ and using the boundary con
ditions, we arrive to the following solvability conditions:

PFt1P^Q (2)&T1^C (2)&X1^CZ
(0)Q (2)&X2^Q (2)&XX1bF

50, ~D8!

SGt1S^S (2)&T2L21x^C (2)&X1L21^CZ
(0)S (2)&X

2^S (2)&XX2x^Q (2)&XX50, ~D9!

where the identity

^CZQX2CXQZ&5^CZQ&X

was used to simplify the algebraic derivations.
luid

eg-

J.
@1# S. Ostrach, J. Fluids Eng.105, 5 ~1983!, and references
therein.

@2# D.A. Nield, J. Fluid Mech.29, 545 ~1967!.
@3# E. Knobloch, Phys. Rev. A40, 1549~1989!.
@4# J.S. Turner, Annu. Rev. Fluid Mech.6, 37 ~1974!.
@5# J.S. Turner, Annu. Rev. Fluid Mech.17, 11 ~1985!.
@6# M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys.65, 851

~1993!.
@7# S.H. Davis, Annu. Rev. Fluid Mech.19, 403 ~1987!, and ref-

erences therein.
@8# J.L. Castillo and M.G. Velarde, Phys. Lett.66A, 489 ~1978!.
@9# J.L. Castillo and M.G. Velarde, J. Non-Equilib. Thermodyn.5,

111 ~1980!.
@10# J.L. Castillo and M.G. Velarde, J. Fluid Mech.125, 463

~1982!.
@11# C.L. McTaggart, J. Fluid Mech.134, 301 ~1983!.
@12# C.F. Chen and C.C. Chen, Phys. Fluids6, 1482~1994!.
@13# J.K. Bhattacharjee, Phys. Rev. E50, 1198~1994!.
@14# J.R.L. Skarda, D. Jacqmin, and F.E. McCaughan, J. F

Mech.366, 109 ~1998!.
@15# S. Slavchev, G. Simeonov, S. Van Vaerenbergh, and J.C. L

ros, Int. J. Heat Mass Transfer42, 3007~1999!.
@16# P.L. Garcia-Ybarra and M.G. Velarde, Phys. Fluids30, 1649

~1987!.
@17# K.-L. Ho and H.-C. Chang, AIChE J.34, 705 ~1988!.
@18# A. Bergeon, D. Henry, H. Benhadid, and L.S. Tuckerman,

Fluid Mech.375, 143 ~1998!.
@19# M. Bestehorn and P. Colinet, Physica D145, 84 ~2000!.
@20# J. Tanny, C.C. Chen, and C.F. Chen, J. Fluid Mech.303, 1

~1995!.
@21# L. Braverman and A. Oron, J. Eng. Math.32, 343 ~1997!.
@22# G.I. Sivashinsky, Physica D4, 227 ~1982!.
3-16



,
J.

LONG-WAVELENGTH THERMOCAPILLARY INSTABILITY WITH . . . PHYSICAL REVIEW E 69, 016313 ~2004!
@23# A. Oron and P. Rosenau, Phys. Rev. A39, 2063~1989!.
@24# E. Knobloch, Physica D41, 450 ~1990!.
@25# L. Shtilman and G.I. Sivashinsky, Physica D52, 477 ~1991!.
@26# A.A. Golovin, A.A. Nepomnyashchy, and L.M. Pismen

Physica D81, 117 ~1995!.
@27# D. Hefer and L.M. Pismen, Phys. Fluids30, 2648~1987!.
@28# L.M. Pismen, Phys. Rev. A38, 2564~1988!.
01631
@29# S.M. Cox, J. Eng. Math.28, 463 ~1994!.
@30# J.R.A. Pearson, J. Fluid Mech.4, 489 ~1958!.
@31# A.A. Golovin, A.A. Nepomnyashchy, and L.M. Pismen, Int.

Bifurcation Chaos12, 2487~2002!.
@32# A.A. Nepomnyashchy, M.G. Velarde, and P. Colinet,Interfa-

cial Phenomena and Convection~Chapman & Hall, London/
CRC, Boca Raton, 2002!.
3-17


